Vibrational Spectra of BaCd(HCOO)₄ · 2H₂O

SUNILA ABRAHAM AND G. ARULDHAS*

Department of Physics, University of Kerala, Kariavattom, Trivandrum-695 581, India

AND GABOR KERESZTURY

Central Research Institute for Chemistry of the Hungarian Academy of Sciences, II Pusztaszeri Ut 59-67, H-1525 Budapest, Hungary

Received April 22, 1991

IR and Raman spectra of $BaCd(HCOO)_4 \cdot 2H_2O$ have been recorded and analyzed. Observation of three separate frequencies for every internal mode of the formate ion is indicative of three crystallographically nonequivalent formate ions. The frequency of the in-plane C-H bending mode is found to be higher than the symmetric CO₂ stretching mode. The correlation field effect is observed to be small. © 1991 Academic Press, Inc.

Introduction

Inorganic formates possess very interesting physical properties such as piezoelectricity (1) (lithium formate monohydrate), antiferroelectricity (1) (copper formate dihydrate), and antiferromagnetism (2) (manganese formate dihydrate). The crystal structure and vibrational spectra of a number of simple formates have extensively been studied (1, 3-11). IR and Raman spectra of mixed crystals of formates of monovalent and divalent cations have not been studied systematically. Feliksinski, et al. (12) used the IR spectrum (650-4600 cm^{-1}) of Barium Cadmium Formate (BCF) to investigate the influence of a metal ion on the carboxylate stretching frequencies of the formate ion. In the present paper, a detailed study of the IR and Raman spectra of the title compound BCF have been presented.

Experimental

BCF crystals, BaCd(HCOO)₄ \cdot 2H₂O, are prepared by the method suggested by Feliksinski and Kolasinski (13). Attempts made to record the polarized Raman spectra of single crystals have not been successful, probably due to the twinning present in large single crystals. The Raman spectra of polycrystalline samples have been recorded on a Cary 82 spectrometer using the 514.5-nm line of Spectra Physics Model 164 Ar ion laser (laser power 100 mW). The IR spectra are measured on a Nicolet 170 SX FT-IR Spectrometer in the 4000–400 cm^{-1} region with the sample in KBr pellet and in Nujol mull. The far IR spectrum is recorded on a Digilab FTS-15B instrument,

Factor Group Analysis

BaCd(HCOO)₄ · 2H₂O belongs to the monoclinic space group $P2_1/c(C_{2h}^5)$ with four molecules per unit cell (12). The cations and

^{*} To whom correspondence should be addressed.

IRREDUCIBLE REPRESENTATION FOR BaCd (HCOO) ₄ · 2H ₂ O								
	$4 \times 4 \text{ HCOO}^-$	$4 \times 2H_2O$	4 Ba	4 Cd	Acoustic modes	Σ		
		Raman						
A,	$(4 \times 6 = 24) + 12T + 12R$	$(2 \times 3 = 6) + 6T + 6R$	3T	3T	_	72		
B_{g}	$(4 \times 6 = 24) + 12T + 12R$	$(2 \times 3 = 6) + 6T + 6R$	3T	3T	—	72		
		IR						
A_{μ}	$(4 \times 6 = 24) + 12T + 12R$	$(2 \times 3 = 6) + 6T + 6R$	3T	3T	- T	71		
$\ddot{B_u}$	$(4 \times 6 = 24) + 12T + 12R$	$(2 \times 3 = 6) + 6T + 6R$	3T	3T	- T-T	70		
		Σ						
	96 + 48T + 48R	24 + 24T + 24R	12T	12T	-3T	285		

TABLE I

Note. T-translations, R-rotations.

the formate ions are in general positions. In the unit cell, formate ions bonded to Ba^{2+} cations are on two sets of 4-fold general positions, but all formate ions bonded to Cd²⁺ cations are situated in equivalent sites (12). Factor group analysis (14) gives the distribution of irreducible representations (excluding the three acoustic modes) at k =0 as in Table I. It shows that all vibrations of all ions and water molecules appear in all factor group species.

Interpretation of the Spectra

The frequencies, assignments, and relative intensities are summarized in Table II. The observed spectra show that all the fundamentals of the formate ions are split into three bands each. As all the modes are nondegenerate, this splitting can either be due to the presence of nonequivalent sets of ions or coupling between identical ions in the lattice. Since the ions are in three different sites, the splitting of the fundamentals into three bands each is due to their presence in nonequivalent sites. The additional splittings observed in the different modes are due to the vibrational coupling between identical formate ions (correlation splitting).

The C-H stretching frequency ν_1 , which appeared as very intense bands in Raman, is a triplet (2831, 2846, and 2927 cm^{-1}) with a splitting of about 100 cm^{-1} . Such a large splitting may not be due to vibrational coupling between identical ions. For this mode a splitting of the same order with four components has been observed in IR. These facts also support the inference that BCF contains three different types of formate ions. The large splitting (84 cm⁻¹) observed for the ν_6 mode also supports this.

Controversy exists in the assignment of the symmetric C–O stretching mode ν_2 and the in-plane O-C-H bending mode ν_5 . In certain compounds (1, 5, 6, 8) ν_2 is assigned to be greater than ν_5 . However, in some others (7, 9–11) ν_5 is assigned to be greater than ν_2 . Among the internal modes of the formate ion, ν_2 is expected to be the most intense Raman band (9). Also, the C-H bending is usually much sharper than the C-O stretching band, since the latter is broadened by hydrogen bonding interactions. In order to check the bandwidths, a curve analysis of the group of bands between 1500 and 1250 cm^{-1} in Raman (Fig. 1) is made. It shows that the component bands at 1377 and 1391 cm^{-1} are sharper

IR	Assignments						
63	Rocking librational mode of HCOO ⁻						
86	-						
113							
143	Twisting librational mode of HCOO-						
158							
170	Wagging librational mode of HCOO ⁻						
255	Ba–O stretch						
267							
283	Translational mode of HCOO ⁻						
291	Cd-O stretch						
660 wbr	Librations of water						
668 w	• •						
703 vwbr							
771 m							
788 m	v_3 symmetric O–C–O deformation						
800 m							
vvw							
1060 vvw	n out of plane C-H bend						
1074 vvw	V6 out of plane C-II bend						
1144 vw							
1330 s							
1340 s	v. symmetric CO. stretch						
	v ₂ symmetric co ₂ stretch						
1362 vs							
1376 m							
1384 m	ν_5 in-plane C-H bend						
1570 sh							
1579 vvs							
1604 sh	ν_4 asymmetric CO ₂ stretch and δ H ₂ O						
1626 sh							
2730 w							
2742 vw	$2 \nu_2$						
2828 w							
2845 m	» C H stretch						
2910 sh	$v_1 \cup -n$ succe						
2930 wbr							
3260 sh							
3420 sbr	ν H ₂ O						
	IR 63 86 113 143 158 170 255 267 283 291 660 wbr 668 w 703 vwbr 771 m 788 m 800 m vvw 1060 vvw 1060 vvw 1074 vvw 1340 s 1340 s 1340 s 1362 vs 1376 m 1384 m 1579 vvs 1604 sh 1626 sh 2730 w 2742 vw 2845 m 2910 sh 2930 wbr 3260 sh 3420 sbr						

 TABLE II

 Spectral Data (cm⁻¹) and Band Assignments"

bands at 1377 and 1390 cm⁻¹ to ν_5 . The absence of one component for the ν_5 mode in IR may be due to accidental degeneracy or might have been overlapped with ν_2 . Bands around 2740 cm⁻¹ are found to be equal to 2 ν_2 .

The asymmetric C–O stretching frequency ν_4 of the formate ion shifts upward from that of RbHCOO, if the metal-formate ion bond is covalent (10). Since barium formate is more ionic than cadmium formate, frequencies of ν_4 modes bonded to Ba²⁺ cations should be lower than those bonded to Cd²⁺ cations (10). Therefore, the bands on the low frequency side may be taken as those due to ν_4 of formates bonded to Ba²⁺ cations. ν_3 is also observed as three wellseparated medium intensity bands at 771,

" Relative intensities: vs, very strong; s, strong; m, medium; w, weak; vw, very weak; vvw, very very weak; sh, shoulder; br, broad.

FIG. 1. Curve fitting of the formate ν_2 , ν_5 region (Raman Spectrum).

than others, and the bands at 1365 and 1355 cm^{-1} are more intense than the 1377 cm^{-1} one (Fig. 1-c). Hence the strong Raman bands at 1333, 1342, 1355, and 1365 cm^{-1} are assigned to ν_2 , and the medium intensity

788, and 800 cm^{-1} in the IR and as weak bands at 768, 788, and 801 cm^{-1} in the Raman spectra.

A single envelope with peaks at 3120, 3225, and 3300 cm⁻¹ in Raman and strong broad bands at 3260 and 3420 cm⁻¹ in IR arise from the stretching vibrations of water molecules. This large shifting of bands shows that fairly strong hydrogen bonds are present in the crystal.

Unambiguous assignment of the low frequency bands is very difficult, as mixing of lattice modes is expected to occur due to the low symmetry and the presence of three different types of formate groups. The intense Raman bands at 264 and 291 cm⁻¹ may be due to Ba-O and Cd-O vibrations, as water would not give rise to such intense Raman bands in this region. The band at 280 cm^{-1} is assigned to the translational mode of the formate ion (9). The most intense bands below 200 cm^{-1} are assigned to the librational modes (1). These librational modes of the formate groups are assigned on the basis of the fact that the frequencies of wagging > twisting > rocking (9).

Results

(i) Splitting of all the internal modes of the formate ion into three components each indicates the presence of three crystallographically nonequivalent formate ions in conformity with the structural result.

(ii) The shifting of the asymmetric C–O stretching frequency of the formate ion to the high frequency side indicates the covalent character of the Cd–O bond.

(iii) From curve analysis it is found that

the frequency of the in-plane C-H bending mode (ν_5) is higher than the symmetric CO₂ stretching mode (ν_2).

(iv) The correlation field effect is small in the compound.

Acknowledgments

The authors are grateful to Dr. J. Mink, Institute of Isotopes, H.A.S., Budapest for making available the use of far IR facilities.

References

- 1. P. S. RAMANUJAM, Indian J. Pure Appl. Phys. 7, 420 (1969).
- 2. KAZUYOSHI TAKEDA AND KUNIYUKI KOYAMA, J. Phys. Soc. Jpn. 52, 648 (1983).
- 3. GABRIELA WEBER, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. **B36**, 1947 (1980).
- M. L. POST AND J. TROTTER, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. B30, 1880 (1974).
- A. M. HEYNS, O. T. VAN NEIKERK, P. W. RICHTER, AND K. J. RANGE, *J. Phys. Chem. Solids* 49, 1133 (1988).
- R. P. CANTERFORD AND F. NINIO, J. Phys. C 6, 575 (1973).
- 7. A. M. HEYNS, J. Chem. Phys. 84, 3610 (1986).
- 8. A. M. HEYNS, J. Mol. Struct. 162, 57 (1987).
- 9. A. M. HEYNS, J. Mol. Struct. 127, 9 (1985).
- J. D. DONALDSON, J. F. KNIFTON, AND S. D. Ross, Spectrochim. Acta 20, 847 (1964).
- 11. C. J. H. SCHUTTE AND K. BUIJS, Spectrochim. Acta 20, 187 (1964).
- T. FELIKSINKSKI, P. GROCHULSKI, W. KOLASIN-SKI, AND Z. WAWRZAK, Mater. Res. Bull. 18, 27 (1983).
- 13. T. FELIKSINSKI AND W. KOLASINSKI, Mater. Res. Bull. 17, 1557 (1982).
- 14. W. G. FATELEY, F. R. DOLLISH, N. T. MCDEVITT, AND F. F. BENTLEY, "Infrared and Raman Selection Rules for Molecular and Lattice Vibrations—The Correlation Method," Wiley, New York (1972).